IPN Progress Report 42-168 February 15, 2007

Optimizations of a Turbo-Like Decoder for
Deep-Space Optical Communications

M. K. Cheng,! M. A. Nakashima,! B. E. Moision,! and J. Hamkins!

The National Aeronautics and Space Administration has developed a capacity-
approaching modulation and coding scheme that comprises a serial concatenation of
an inner accumulate pulse-position modulation and an outer convolutional code for
deep-space optical communications. Decoding of this serially concatenated pulse-
position modulation (SCPPM) code uses a turbo-like algorithm. However, the in-
ner code trellis contains many parallel edges that are not typical in standard turbo
codes and, therefore, a straightforward application of classical turbo decoding is
very inefficient. Here, we present various optimizations applicable in hardware im-
plementation of the SCPPM decoder. More specifically, we feature a Super Gamma
computation to efficiently handle parallel trellis edges, a “maxstar top 2” circuit
fit for pipelining, a modified two’s complement subtraction circuit with a shorter
path delay, and a cyclic redundancy check circuit for window-based turbo decoders.
We also present a polynomial interleaver where current interleaver positions can
be calculated from previous positions. This recursive interleaver property enables
an algorithmic realization in which no memory is needed to store the interleaver

mappings.

Using the featured optimizations, we implement a 6.72 megabits-per-second
(Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Com-
pared to the current data rate of 256 kbps from Mars, the SCPPM-coded scheme
represents a throughput increase of more than twenty-six fold. Extension to a
50-Mbps decoder on a board with multiple FPGAs follows naturally. We show
through hardware simulations that the SCPPM-coded system can operate within
1 dB of the Shannon capacity at nominal operating conditions.

l. Introduction

All of the current deep-space missions of the National Aeronautics and Space Administration (NASA)
communicate to Earth using the radio frequency (RF) spectrum. However, the RF spectrum contains
much congestion and is susceptible to high diffraction loss due to the spreading of the beamwidths.
For example, if we use a transmit antenna that is 3.7 m in diameter (such as one that is mounted on
Voyager) and a frequency in X-band (approximately 8 GHz) to communicate between Earth and Saturn,

I Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

the transmission beam will spread out over an area over 1000 Earth diameters wide due to diffraction.
We can contrast this result with a system that employs optical communications. If we instead use a small
10-cm optical telescope with a wavelength of 1 pm to communicate data between the same Earth—Saturn
distance, the resulting spot size will be only 1 Earth diameter wide. This represents a factor of 1000
concentration of received energy in both the horizontal and vertical directions (a factor of 10° in power
intensity). This improved energy delivery efficiency allows an optical link to operate at a lower transmit
power and aperture size while still achieving a higher link data rate. For all of these reasons and more,
NASA plans to utilize higher frequency regions in the electromagnetic spectrum to increase the deep-
space information throughput from 256 kilobits per second (kbps) (Mars Exploration Rovers) to tens of
megabits per second (Mbps) and beyond.

Modulation and error-correction coding are keys to reliable communications. In the case of an optical
link with direct detection, which we consider here, a modulation that has a high peak-to-average-power
ratio has been shown to be very efficient [1]. Pulse-position modulation (PPM) is one scheme that
offers a high peak-to-average-power ratio. An M-order PPM divides a symbol interval into M possible
pulse locations and a signal pulse is placed into only one of these possible positions, depending on the
information to be transmitted.

Moision and Hamkins compared various concatenated modulation coding schemes with PPM that
included Reed—Solomon PPM (RS-PPM), low-density parity-check PPM (LDPC-PPM), and convolu-
tionally coded PPM. They discovered that a serially concatenated pulse-position modulation (SCPPM)
scheme offers the best performance and complexity trade-off [2].

Modulation is a mapping of bits to symbols transmitted on the channel. This mapping may be
considered a code, and demodulation may be considered decoding of the code. Conventionally, the
modulation and error-correcting code (ECC) are decoded independently, with the demodulator sending
its results to the ECC decoder. However, the combination of the modulation and the ECC can be treated
as a single large code, which maps user information bits directly to the symbols transmitted on the
channel. In some instances, several decibels in performance could be gained by decoding the ECC and
modulation jointly as a single code as opposed to decoding them independently. An exact maximum-
likelihood (ML) decoding of the joint modulation-ECC code would be prohibitively complex in most
cases of practical interest. However, true ML decoding may be approximated while limiting the decoder
complexity by iteratively decoding the modulation and the ECC. This is in fact the “turbo” principle,
and more details can be found in [3].

Due to the unique structure of SCPPM, a straightforward application of the standard turbo decoding
algorithm would be very inefficient. Other codes, especially ones designed for the optical channel, that
have similar constructions might face the same challenges in their decoding complexity and could benefit
from optimizations presented in this work.

This article is organized as follows: in Section II, we give our channel assumptions. In Section III, we
describe the SCPPM code construction and explain why application of classical turbo decoding is not
practical. The SCPPM decoding algorithm uses the turbo principle but includes many new techniques
that optimize the decoding speed and performance. In Section IV, we describe the turbo-like part of
the SCPPM decoding. In Section V, we present the hardware optimizations. More specifically, we
illustrate how to efficiently decode on a trellis that contains parallel edges. We also describe a hybrid
“maxstar top 2” circuit fit for pipelining and a modified two’s complement subtraction circuit with a short
path delay. In Section VI, we describe the SCPPM interleaver design. The interleaver, characterized by a
permutation polynomial, produces a good decoder threshold and a low decoder error floor. The interleaver
also has an algorithmic realization that does not require storing the interleaving and deinterleaving
mappings.

To increase the overall throughput, the SCPPM code trellis can be partitioned into windows, and
parallel decoders can be applied to the windows. In Section VII, we provide a cyclic redundancy check

(CRC) circuit that will work with window-based turbo decoders. In Section VIII, we present various field-
programmable gate array (FPGA) implementations of the SCPPM decoder that include the featured
optimizations and show that SCPPM can operate within 1 dB of capacity in a nominal deep-space
mission scenario. We demonstrate that a 6.72-Mbps decoder can be realized on a single FPGA. In
addition, we outline a readily achievable path to implementing a SCPPM decoder that can deliver 50 Mbps
(enough to transfer compressed high-definition television signals) and beyond for deep-space or satellite
communications.

Il. Channel Assumptions

We consider an optical communications system that uses direct photon detection with a high-order
PPM [4, Chapter 1.2]. An M-order PPM uses a time interval that is divided into M possible pulse
locations, but only a single pulse is placed into one of the possible positions. The position of the pulse
is determined by the information to be transmitted. A diagram of the optical communications system
under discussion is shown in Fig. 1. The information bits u = (uq,us, - -, ux) are independent, identically
distributed (i.i.d.) binary random variables assumed to take on the values 0 and 1 with equal probability.
The vector u is encoded to ¢ = (¢1, ¢, -+, ¢,), a vector of n PPM symbols. The overall length in bits for
a codeword block is N = nlog, M.

At the receiver, light is focused on a detector that responds to individual photons, as illustrated
in Fig. 2. For each photon sensed, the detector produces a band-limited waveform for input to the
demodulator. This waveform is used to estimate the photon count k; within each slot 7. On the Poisson
channel, a nonsignaling slot has average photon count n, and a signaling slot has average count ng + ny,
so that the likelihood ratio of slot 7 is calculated by

(ng + np)rie= (st /L1

LR (k) = n’bﬂe—”b/ki!

Il
8
|
3
w
7 N
=
+
|3
»
N~
I
—~
—
SN~—

More on the receiver design can be found in [5].

Background Light

u c
——> Encoder M Moduiator >
Bits PPM Light
Symbols Pulses Signal and
Background
Light
4 | p(c) PPM — Photon
¢ Bit Decoder Demodulator Slot Detector
Estimates PPM Counts

Symbol Likelihoods

Fig. 1. An optical communications system.

Demodulator Front End

i
c(t) y(t)! k. Form Slot I To Decoder
—»(Transmitter P Channel P Detector ¥ Receiver P llRs _:_>
PPM . | | LLRs
Symbols Photons Photon Electrical | Photon Count |
Sent Arrivals Waveform=- - - - ——— Esfimates . ~ ~ ~ ~ ~ ~
|| | | | | | || Ppum
c(t) | | | | | | | | [Modulation
< >

One Symbol Duration: M Slots

o110 Y R P

Arrivals | | | | Poisson Process

y(t) /\ /\ A, 'AVA' A\Aﬂvf\ Avl\ Avl\ AA“\A n:\ /\f\ n,\ | | Band-Limited

| v NV | | Waveforms

Receiver

LLR; Estimates of

Fig. 2. From PPM symbols to log-likelihood ratios (LLRs).

lll. The Serially Concatenated Pulse-Position Modulation Code

The SCPPM encoder, shown in Fig. 3, consists of an outer rate-1/2 constraint-length-3 convolutional
code, a permutation polynomial interleaver, and an inner accumulate PPM (APPM) code. A block of
K information bits u that includes a CRC is encoded by the outer convolutional code to yield a length-N
coded sequence x. This coded sequence is permuted bit-wise to produce the sequence a that is then
filtered by an accumulator and mapped to n = N/log, M PPM symbols ¢. There are log, M bits per
PPM symbol. Due to the APPM bits-to-symbol mapping, the trellis that describes the inner code consists
of 2 states and M /2 parallel branches between connecting states. We cannot directly apply standard turbo
decoding and treat each of the parallel edges separately because doing so would make pipelining difficult
and increase decoding latency.

The interleaver and deinterleaver are described by second-order permutation polynomials, and efficient
designs are given in Section VI.

IV. SCPPM Decoding: The Conventional Turbo-Like Part

Decoding of the SCPPM code uses the turbo principle. The decoding procedure also incorporates
new techniques and components that are not found in the standard turbo approach in order to optimize
hardware implementation. We first discuss the turbo portion of SCPPM decoding and then present the
new techniques and components that enabled a high-data-rate FPGA decoder.

A high-level block diagram of the SCPPM decoder is given in Fig. 4. The symbol [indicates in-
put to the constituent decoders, and O indicates output. The inner decoder operates on the modulation

Accumulate PPM

(3,1/2) X a 1 w c
u—Pp CRC P Comvol. —— I > —»| PPM >
Code 1®D
Interleaver
Quter Code
Inner Code

SCPPM Encoder
Fig. 3. The SCPPM encoder.

p(a;0) - PI) p(u;0)
p(c;/) > > —
> Inner Outer
From Decoder Decoder
Channel ¢ I [¢———
p(a;/) p(x;0)

T

p(u;/)=0

Fig. 4. The SCPPM decoder. Output bits can be directed to a cyclic redundancy check (CRC) to validate codewords.

code, and the outer decoder operates on the convolutional code. Each code is described by a trellis. For
each trellis, the Bahl-Cocke—Jelinek—Raviv (BCJR) algorithm [6] is used to compute the a posteriori log-
likelihood ratios (LLRs) from a priori LLRs by traversing the trellis in forward and backward directions.
Extrinsic information (the difference between the a posteriori and a priori LLRs) is exchanged in iteration
rather than the a posteriori LLRs to reduce undesired feedback.

A. Log-Domain Decoding

Each decoder module in the SCPPM decoder applies the BCJR algorithm to the trellis of the con-
stituent code. We use standard notations in the turbo decoding literature [7] and simply restate the
calculation of the branch and state metrics inside the inner decoder module. To facilitate hardware re-
alization, the metric computations are done in the log domain [8], which translates multiplications into
additions and is less sensitive to round-off errors in fixed-point arithmetic.

Let V be the set of states and £ be the set of directed labeled edges in a trellis. Each edge e € £ has
an initial state i(e) and a terminal state ¢(e) (see Fig. 5). For each edge e and stage k of the inner code
trellis, the BCJR algorithm traverses the trellis in the backward direction to calculate the log branch
metric as

Yi(e) = pr(a; I) + pr(c; 1) (2)

The term pg(c; I) is the PPM symbol LLR provided by the channel given in Eq. (1), and the term py(a; I)
is the a priori symbol LLR provided by the outer decoder. In the same trellis pass, the BCJR algorithm
calculates a backward state log metric for each state s and stage k as

Fig. 5. One stage of a trellis

Br(s) = In Z exp (Brr1(t(e)) +Anr1(e)) (3)

e:ri(e)=s€V

This approach is also known as log maximum a posteriori (log-MAP) decoding [9]. The algorithm then
traverses the trellis in the forward direction to calculate the @’s in the same way. The output LLRs are
a function of @’s, 3’s, and 4’s. The outer decoder operates on the trellis that describes the outer code
using the same principle.

The log sum of exponentials of Eq. (3) can be expressed as the max of the exponents plus an adjustment
term. This operation is known as the maxstar function:

m*ax (1‘, y) é 111(@95 + ey) = max(,]j’ y) +In (1 + e—|z—y\) (4)

The adjustment term can be precomputed and stored in a lookup table to reduce complexity at an
increase in memory usage [10]. We can also ignore the adjustment term entirely to save on memory—this
approach is known as max log-MAP decoding. Some of the loss incurred from this approximation can be
recovered by scaling the extrinsic information that is passed between the inner and outer decoders [11,12].

V. SCPPM Decoding: Optimizations Beyond That of Turbo Conventions

Direct application of conventional turbo decoding to SCPPM is inefficient. Here, we provide new
techniques that generate speed, memory, and throughput optimizations. These techniques can be applied
to codes that are designed for the optical channel and have structures similar to that of SCPPM.

A. Simplifying Computations with Parallel Trellis Edges

The inner APPM code trellis has 2 states and 2M edges per stage and can be viewed as collapsing
log, M binary trellis stages into one, as seen in Fig. 6. The forward and backward recursions on this

trellis require taking the max of M /2 edges per transition between two states. Suppose each 2-input max
operation incurs a delay of one clock cycle. A direct implementation of the forward-backward algorithm

would require a delay of log, (M/2) cycles per transition between two states just for the max’s. Barsoum
and Moision [2,13] showed that the computation can be pipelined, reducing the M /2-input max operation

to a 2-input max operation that is computed in one clock cycle. Here, we illustrate how to deal with
parallel trellis edges efficiently using the 3 recursion. The & computation follows in the same manner.

In the product domain, it is straightforward to see an application of the distributive law (multiplication
distribution over addition) saves computations on a trellis with parallel edges:

Yo % Branches
S0,k +1

log, M Stages S0,k

A
v

Collapse

AN

Stage k+1
Fig. 6. Grouping log, M bits into one PPM symbol. A single stage of the inner
APPM code trellis with M/2 parallel edges between connecting states.
Bil(s) = D Bepa(t(e)rer1(e)

exi(e)=s

Yoo BemmrE@+ Y BeraE)msale)

eii(e)=s,t(e)=s e:i(e)=s,t(e)=3
= [Bea(s) D wmm@ |+ [Bn® D (e
eri(e)=s,t(e)=s ei(e)=s,t(e)=5

= Brer1(5)Ves1(5:8) + Ber1(3)Vky1(5,3) (5)

where v, (s, s), a sum over parallel edges, is referred to as the Super Gamma for the state pair (s, s) at
stage k + 1; the same calculation can be made for the state pair (s, 5).

We have an analogous simplification in the log domain via the distributive law (addition distributive
over m*ax)7 which can be seen by taking logarithms of both sides of Eq. (5):

Bi(s) = In (exp (Bi+1(s) + 1 (s, 8)) + exp (Brs1(5) + Viya (5, 5)))

mgxge{s,g} {Bk+1(§) + ’_YI/C+1(57 5)} (6)

where

;Yllc(sa §) :mgxe:i(e)=s,t(e)=§ {ﬁ/k(e)} (7)

Since the #¥,’s are not a function of a recursively computed quantity, they may be precomputed via
a pipeline, as illustrated in Fig. 7. The schedule for the Super 7 calculations is shown in Fig. 8. The
pipeline is filled with the first log, M stages of 7’s. The decoding BCJR algorithm then starts after the
pipeline is filled, and thereafter a set of Super v values per trellis stage is generated per clock.

YO —> % AO
max
71—
ST A
max [—P
—> Alog,M-1
Yo —Pp X
max —> . Output
YS _> [] max
—
> *
max >
Ymi2)-2 —p
max
Yimr2y-1 —|
Fig. 7. Pipelined max to compute the Super y’s.
Points in Pipeline: Ao A4 A|092 M1 Output
	!			
	:			
I I I				
1 Stage 0 !				
I I I				
Stage 1 Stage 0				
2 9 9		One Stage of Super y		
2 Stage 2 Stage 1 Stage 0 I I Is Ready for Every				
=	i	I Clock After This Point		
I I I				
! ! 4—,				
log,M/2	log, M/2 1 log, M/2 -2 Stage 1 Stage 0 @			
1]				
log, M/2 log, M/2 —1 Stage 2 Stage 1 r®				
= E				
! :	Stage 2 8 %			
! | I ! 25
v . | | ! ! I VEZ
I I

Super y Calculations

Fig. 8. Scheduling for the Super y calculations. A stage in the figure represents a stage of y’s in the trellis.

B. Maxstar Only the Top Two Elements

Implementing the full log-MAP decoder consumes much of the FPGA resources because each maxstar
operation requires a lookup table. For SCPPM, the number of tables required is increased by the poten-
tially high number of parallel edges in the APPM code trellis. To reduce the FPGA resource utilization,
we can ignore the adjustment term in the maxstar function and simply use the max operation. However,
this simplification, called max log-MAP decoding, comes with a significant decoder performance loss. Wu
and Pisuk [11] showed that a confidence factor, which we denote as FF (0 < FF < 1), can be used to
weight the extrinsic LLRs that are passed between two iterative decoders to recover some of the loss in-
curred from the max log-MAP approach. To recover yet more of the loss, we consider a hybrid approach
that takes the maxstar of the top two elements in the input array to further reduce the gap between
log-MAP and max log-MAP decoding.

1. The Algorithm. Given an array of n elements x = (z1, 22, -+, 2,), one method of finding the
maxstar of the top two elements consists of sorting the array. To do this, one can simply assign two
variables, top and top2, to x1 and xo, and then compare the rest of the elements in x first with top and
then with top2. If the compared element is greater than top, we replace top2 with top and top with the
element. If the compared element is greater than top2 only, we replace top2 with the element. This
procedure is of complexity O(n); at its completion, the two variables will contain the top two elements

of x, and we perform a max (top, top2) to obtain the desired result. This method would not be efficient to
realize in hardware as it requires a state machine, takes n clocks for each array, and cannot be pipelined.
Thus, we develop a “maxstar top 2” algorithm that can be implemented recursively and does not require
significant additional circuitry relative to simply taking the max.

The idea is to build from the “max only” pipeline that finds the top element in x. The base case reduces
to taking the max of two elements, z; and x;, where both 4,5 € {1,---,n}. Instead of propagating only
the max of the two elements after each comparison, we also feed forward their difference A; ; = |z; — ;.
In this way, at every stage of the pipeline, we would then be able to maintain not only the current
maximum element but also its difference with the next largest element compared so far in the pipe.

Our maxstar top 2 algorithm takes in four inputs and produces two outputs. The inputs are two
elements to be compared, z; and x;, and the difference between each and their next largest element in
the previous stage, A; i and A; ;.

2. The Circuit. The circuit for the two-element maxstar top 2 is given in Fig. 9. The two inputs are
denoted here as A and B. Without loss of generality, assume A > B. We need to consider only two cases
to see how the circuit works. The output of the top multiplexer (mux) will be A, and the lower mux will
select 4.

Case 1: §4 > |A — B|. We state that §4 is the difference between A and its previous comparison,
denoted here as A’. Substituting for d4, we have |A — A’| > |A — B|, and we can strip the absolute values
because A is the largest of the three so A — A’ > A — B and A’ < B. The element B is closer to A, and
we output |A — B| in the final mux.

A>B

min (Smax(A,B)’ IA-BI)

|A-B|

A 4

8> | A-B|

Fig. 9. The maxstar top 2 circuit.

Case 2: §4 < |A— B|. We have here |A— A’| < |A— BJ|. Stripping the absolute values and
rearranging the terms, we get A’ > B. The element A’ is closer to A than B, and we output §4 in the
final mux.

We can inductively see that, in the base case with a two-element input, the maxstar top 2 circuit
outputs the maximum element and the difference between the maximum and the next largest element in
previous comparisons. We can simply replace the maxstar circuit in the pipeline of Fig. 7 with maxstar
top 2 to find the largest element and the difference between the largest and the second largest in all
stages before the last. We use a maxstar circuit in the last stage to calculate the maxstar of the top two
elements in an array, as illustrated in Fig. 10. This approach can be extended to the maxstar of the top
four elements and so on. The performance of maxstar top 2 is benchmarked in Section VIII.

C. Fast Modulo Normalization

The BCJR algorithm consists of traversing the code trellis and updating a set of state and branch
metrics. The metric update path is illustrated in Fig. 11. Due to the recursive nature of the updates, each
of the state metrics in a stage is normalized and clipped by subtracting out the maximum state metric
of that stage. This update path cannot be pipelined due to the recursions and becomes the critical path
that limits the maximum clock rate at which our design can run on the FPGA. Without normalization,
the state metrics can grow unbounded and eventually overflow in a fixed-point hardware implementation.
It has been shown for the Viterbi algorithm [10,14] that, as long as the quantization bit width is sufficient
to account for the maximum differences between the state metrics, the metrics updates can be allowed to
overflow without affecting the result of the computations. This approach naturally extends to the BCJR
algorithm, but none of the related literature we found explained this topic in a way that can be easily
translated into hardware implementation. Here, we clearly describe this modulo arithmetic approach and
provide a block diagram to illustrate its use in SCPPM decoding. We also introduce a modification that
can reduce the path delay in this fast modulo operation by 1 bit.

maxstartop2
X —Pp
x; g max (A, B)
” SA min (Smax(A,B)IA_BI) » —>
maxstartop2
X3 —Pp —>
X4 —Pp
4 maxstartop2
e > maxstartop2
< > —p —
. . A max (A,B)—p 2
] [} _> B gg)
.] —Pp|d .
SA min (Smax(A,B)IA_ Bl) —» g
maxstartop2 —»|°B L
Xn-3 —Pp|
Xn_o g max (A, B)
” gA min (Smax(A,B)IA_Bl) > —>
o —Pp| 0B _| > —>
maxstartop2 >
—>

maxstartop2

¥
o

Fig. 10. The maxstar top 2 pipeline.

10

State Metrics

Unnormalized Normalized
State Metrics State Metrics
| |

|) | Random
Maxstar Normalize
Adder »| Operations [P andCip [P Access

|_> |_> Memory

Branf:h Other State Metrics
Metrics Next State Metric = Current State Metric + Branch Metric

Fig. 11. Metric update in the BCJR algorithm using clipping and normalization.
This approach leads to a long critical path.

In modular arithmetic, a metric m; is mapped into its modulo metric,

mj = ((mj + %) modC) - % (8)

so that —(C/2) < m; < (C/2). This can be visualized by wrapping the real number line around a
circle with circumference C'. Going around the circle in a counter clockwise direction traverses a path in
increasing magnitude, and going around the circle in a clockwise direction traverses a path in decreasing
magnitude.

For any two real numbers m;, m; such that their absolute difference is bounded by some finite value,
that is

C
mi —my| < 9)

their modular difference |m; — m;| equals their actual difference |m; —m;|. Proofs are given in [14,15].
A general description of modulo metric normalization is given in Fig. 12. The angle « is the result of
two’s complement subtraction of mo from m;. We know that m; < mso because a < 7 and its sign bit
is 1. The angle o’ is the result of two’s complement subtraction of m; and m3. We know that my > mg
because o/ > 7 and its sign bit is 0.

To reduce the critical path, we can replace the metric update operation illustrated in Fig. 11 with
that of Fig. 13, which uses modulo metric normalization. We see that the new data path avoids the
normalization and clipping circuit and consists of only two’s complement additions and subtraction.

D. A Fast Two’s Complement Subtraction

Shung et al. [15] developed a modified rule that removes a 1-bit delay in two’s complement compar-
ison with the Viterbi algorithm in mind. We use their technique as a base for developing a fast two’s
complement subtraction. Shung defined the comparison of two metrics, m; and m;, as

1, ifm; <my

Ty ;) = . 1

z (M, ;) {O7 otherwise (10)
Let m; = (Myp,Mip_1, -, Mip) and m; = (M p, Mjp_1,---,M;0) be the two’s complement repre-
sentation of the modulo metrics, each having a bit width of p + 1, and let m; = (M p_1, -, Mi0)

1

\m—mjl < C/2

Circumference is C

mo 0<T SO My <My
Increasing o m1
Magnitude
a|
-C/2 0
7
X
e
b
e
7
7
7
Decreasing
Magnitude
Mgy o'>7T SO my>msy
Fig. 12. The idea of modulo arithmetic.
The reference metric is m.
Sign Bit j
State % m;
Metric 1 Pl Two's >
Complement
l\‘if?r_“?*} p| Addition
etric
Two's Mux Max Two's ||
Complement | Complgment P RAM
Stat Subtraction Addition
ate
; > .
eme 2 Cor:;‘llgrient Maxstar
Branch o n LUT
Metric 2—) Addition mj »
=

Fig. 13. Architecture for fast metric update using modulo arithmetic in the BCJR algorithm.

and m; = (Mjp—1,--
rule is

z (Mg, myj) =My p ® My, ®y (M, mj)

where @ is the exclusive or (XOR) operator and

P 1,
y(miamj) = {0

12

if m; <M
otherwise

-,Mm;0) be their respective unsigned representations. Shung’s modified comparison

(11)

(12)

is the unsigned comparison. Therefore, z (m;,m;) is equal to y (1, m;) if m; and m; have the same
sign, and z (m;,m;) is the logical inverse of y (1i;,71;) otherwise. Since the operations m; , ® m;, and
y (1, 7;) can be performed in parallel, the modified rule reduces a 1-bit comparison delay.

We incorporate Shung’s modified rule into the modulo metric normalization procedure for the BCJR
algorithm. The two’s complement subtraction in Fig. 13 is a (p + 1)-bit operation. We reduce this
subtraction into a p-bit operation by concatenating the comparison rule of Eq. (11) with the result
obtained by two’s complement subtraction of m’ = m; — ;. In other words, the original subtraction
result is equal to (2 (m;,m;),m’). Because computation of z (m,,m;) and m’ can occur in parallel, the
1-bit delay reduction offered by Shung’s approach is preserved. The fast two’s complement subtraction
circuit is given in Fig. 14 and can be used to replace the subtraction module in Fig. 13 to achieve fast
modulo normalization.

E. Partial Statistics

To reduce the channel likelihood storage requirements, we may discard the majority of the channel
likelihoods and use partial statistics. This may be accomplished by processing only a subset consisting
of the largest likelihoods during each symbol duration—the likelihoods corresponding to the PPM slots
with the largest number of observed symbols. The observation of the remaining slots is set to the mean
of a noise slot. In low background noise, a small subset may be chosen with negligible loss. More on this
topic can be found in [16].

p - Bit Operation

Sign Bit

Unsigned
mj Comparison

Concatenate Sign Bit
and Subtraction Results

p - Bit Operation

A 4

Two's
Complement
Subtraction

A 4

| |
| |
| |
|
|
|
|
|
|
|
|
| |
. |
' |
| (M, -, M) —|>
|
|
|
|
|
|
|
|
|

p + 1 Bit Inputs But Only a p Bit Operation

Fig. 14. A fast two's complement subtraction for modulo normalization.
Inputs are p + 1 bits but the circuit path is only p bits.

13

F. Window-Based Decoding Approach

We can partition the code trellis into distinct segments and decode these segments in parallel, therefore
increasing the overall throughput. In iterative decoding, a CRC is often used as a stopping rule. While
the concept of windowing is not new, we have not seen in the literature a description of an efficient CRC
circuit that works with window-based turbo decoders. In Section VII, we will provide such a circuit
realization.

The inner SCPPM trellis consists of n = N/logy M symbols or segments. The codeword length N
is selected to be 15120 bits, and a practical PPM order M is 64. For this setting, the inner trellis will
have 2520 segments. The outer trellis is a rate-1/2 code and therefore has N/2 or 7560 segments. We
can partition the outer code by three and apply window-based BCJR to all three segments in parallel to
obtain an overall increase in throughput by a factor of two, as seen in Fig. 15.

In simulation, we observed that we do not have to use a warm-up window to obtain a performance
close to that of the original. That is, for the leftmost trellis segment, we can initialize the first state metric
of the first stage to 0 (log-MAP decoding) and the remaining states to the smallest possible fixed-point
value. The state metrics at the end of this trellis segment can be set to equal probability. For the middle
trellis segment, we set the state metrics at the first stage and at the last stage to equal probability. For
the rightmost trellis segment, we set the state metrics at the first stage to equal probability and terminate
the trellis by assigning the first state metric of the last stage to 0 and the remaining state metrics to the
smallest possible fixed-point value.

VI. The SCPPM Interleaver Design: Fast and Memory-Free

The interleaver design can affect the decoder threshold and error floor. Choosing a random interleaver
permutation will generally lead to a desirable threshold, and the key to interleaver design becomes finding
a permutation that will also lead to a low error floor. The SCPPM interleaver is characterized by a
second-order polynomial f (j) = kj + £j2. We use choice selections of the parameters x and /¢ to generate
a permutation polynomial that not only exhibits a low error floor but also possesses a simple hardware
implementation [17,18]. Section VIILE provides a comparison of the SCPPM polynomial interleaver with
the o-random interleaver [19].

Time to Complete One Codeword lteration

Inner Decoder Outer Decoder Outer Decoder Outer Decoder

¢ >
Decoding Time = 4 Units

Time to Complete One Codeword Iteration with Parallel Outer Code Windowing

Inner Decoder Outer Decoder #1 By Partitioning the Outer Code Trellis
into Three and Applying the BCJR
Algorithm to All Three Trellis Segments
Outer Decoder #2 in Parallel the Iteration Time per
Codeword Is Reduced by Half.

Outer Decoder #3

« >
Decoding Time = 2 Units

Fig. 15. Windowing increases throughput. For N= 15120 and 64 PPM,
outer trellis is three times as long as the inner trellis.

14

The interleaver input bit position f(j)mod N is mapped to output bit position j, i.e.,
XfG) = &y
Xi = ap-1(35)

We show that mapping for the (j+m)th interleaver position can be expressed as a function of the current
interleaver position j:

[FG+m)]y = [5G +m)+LG+m)?]
= [(kj +€5%) + (2mlj +m (k + tm))]

= [fG) +9(m,5)] (13)

where
g(m, j) = 2mlj + m(x + ¢m) (14)

and [-]n is the “mod N” operation.

In our design, we assign N = 15120 = 2% .33 .5.7. Candidate interleavers for this N are of the
form f(j) = kj + 210Aj2 [17], where X is a positive integer and x does not have 2, 3,5, or 7 as a factor.
Among this class we have observed good performance with the polynomial f (j) = 11j+21052. An inverse
polynomial is calculated in [2] and given as f~! (i) = 7331i + 7770i%>. We use the inverse polynomial to
implement the deinterleaver.

A. Interleaver Partitioning for One Clock Read/Write Access

For an M-order PPM modulation, the inner decoder processes a PPM symbol (or logs M bit LLRs)
per trellis stage. A straightforward scheduling would be to read one LLR from the interleaver memory
per clock. This approach incurs a long latency because the inner decoder would have to wait logy M
clocks before proceeding to the next stage. To make interleaving more efficient, we design an approach
that allows one clock read/write access. This approach also applies to the deinterleaver.

We illustrate our idea using the M = 64 SCPPM decoder with N = 15120. The interleaver memory is
partitioned into log, 64 = 6 memory modules. This implementation can be easily adapted for codes with
other PPM orders and parameters.

Each module is implemented using Xilinx dual-ported block random access memory (BRAM) as shown
in Fig. 16. The input position into the inner decoder j is determined from the output position f(j) of
the outer decoder, that is Pal[j] < PxO [[f(j)]]- At each clock, the outer decoder produces two LLRs,
and these are written in permuted order into the BRAMs simultaneously. The address permutation-to-
memory location mapping for the interleaver is given in Table 1. The first column consists of the output
position [fG)] of the outer decoder in sequential order. The second column consists of the correspond-
ing input position j into the inner decoder. The third and fourth columns are the memory module index
(jmod 6) and address (|j/6]) in which the corresponding outer decoder output position is stored. The
fifth column indicates the trellis stage, and the sixth column marks the BCJR window number (for the
window-based SCPPM decoder). For example, the 221st LLR, starting from zero, produced by the outer

15

J module 0

Erom 0 address 0 Pal
D(gé,ct)z;r 2LLRs 6 address 1
12 address 2 1LLR
PxO
1 LLR/row
To
Inner
Module 1 Decoder
1
Permuted LI;R 7 Dual
Addresses addr 13 Ported 1LLR
: BRAM
| - .
L
. . To
/ Inner
5 Decoder
Write "
Enable ’ 17 1LLAR >
S
Module 5

Fig. 16. Interleaver implementation. Permuted addresses can be obtained from
lookup table or computed on-the-fly.

decoder corresponds to the first LLR input for the inner decoder. This LLR is stored in address zero of
memory module one. This LLR is calculated at the 110th outer code trellis stage (0-7559) and belongs
to the zeroth window segment (out of three).

The outer decoder writes to the interleaver BRAMs in permuted order using the mapping of Table 1.
As we march down the table entries, we see that there will be no write conflicts at any time because the
period of memory module writes is six and only two LLRs are produced by the outer decoder each clock.
During interleaver reads, the inner decoder accesses the BRAM entries in sequential order. That is, at
the first clock, the inner decoder reads the first entry (address 0) of each of the six memory modules
and increases the address pointers by one. The six LLR reads correspond to Pal[0] through Pal[5] and
are presented in a bold-faced font in Table 1. At the next clock, the inner decoder reads the second
entry (address 1) of each memory module and again updates the address pointer. These six LLR reads
correspond to Pal[6] through Pal[11], and so on.

The deinterleaver is implemented as one big chunk of memory, as illustrated in Fig. 17. The output
LLRs generated by the inner decoder are written sequentially six at a time into one row of the dual-ported
BRAM. The outer decoder then reads the LLRs in permuted order two at a time from the deinterleaver.
The address permutation table for the deinterleaver is the same as that of the interleaver given in Table 1,
with the exception that the header corresponds to that of the second row. For example, PxI[862], the
862nd LLR (starting from zero) input to the outer decoder should be read from the second column, zeroth
row of the deinterleaver BRAM. The control logic reads the desired two rows and then selects the correct
entry out of each row. One can see from the table that there are no read conflicts.

With the above interleaver and deinterleaver design, the LLRs produced or required by a stage of
trellis decoding can be written to or read from memory in one clock cycle.

16

Table 1. Address permutation table for the interleaver (top header)
and deinterleaver (bottom header).

x5y f(5) a;:j Module Address Stage Window
X1 ap 13 F10) Column Row Stage Window
0 0 0 0 0 0
1 15101 5 2516 0 0
2 382 4 63 1 0
3 1203 3 200 1 0
4 2444 2 407 2 0
5 4105 1 684 2 0
221 1 1 0 110 0
862 2 2 0 431 0
5040 10080 0 1680 2520 1
5041 10061 5 1676 2520 1
10080 5040 0 840 5040 2
10081 5021 5 836 5040 2
15119 439 1 73 7559 2
Columns
0 1 2 3 4 5
Rows 0
1 \ Px|
To
Port A 6 LLRs 1LLR Quter
Decoder
- PaO 6 LLRs per Row
Write Sequentially
Select from
6LLRs Bual-Ported Permuted Address Table
ual-Porte
From Inner Decoder BRAM \ Pxl
To
Port B 6 LLRs 1LLR OQuter
P ted Decoder
ermute
Addresses /¢
Select from

Permuted Address Table
|

Fig. 17. Deinterleaver implementation. Permuted addresses can be obtained from a
lookup or computed on-the-fly.

B. No Need to Store Interleaver Mappings: An Algorithmic Implementation

We can avoid the need to store Table 1 in memory by computing the memory module and address for
a specific interleaved position on-the-fly. The interleaver is partitioned into C' distinct memory blocks,
each with n = N/C entries for fast read and write access. Each interleaver position [f (])] N for j =
[0,1,--+,N — 1], is mapped to a corresponding index pair (rs(;),qs(;)), Where ry;y = [f(4)], is the
index into one of the C' memory modules and gy = [|f()/C]], is the index into one of the n address
entries in each module. With windowing, the inner and outer decoder exchanges C' = logy M bit LLRs
per decoding stage. Because the modulo and division operations are costly to implement in hardware,
we describe a procedure that calculates the interleaver indexing pair for the set of C' bit LLRs desired by
the current stage based on the set of C' indexing pairs computed in the previous stage. We begin with a
proposition.

Proposition 1. If C'| N, then [[f (j)]y]. is equivalent to [f (j)]c-

Proof. A nonnegative number f modulo C' can be obtained by continuously subtracting C from f
until f becomes less than C. If C' | N, the number f modulo N can be obtained by subtracting n = N/C

multiples of C' from f. Therefore, [[f(j)] is equivalent to [f(j)] .- a

~le ¢

Step 1. Initialization. We assign the constant A, = [2C¢],,, define g(I) = g(C, 1), and set the initial
modulus values using Egs. (13) and (14) to

rro) = (O] o rpe—ny = [f(C=1)], (15)
Tg(0) = [Q(C, 0)]0’ o Tg(c-1) = [g(c’ C - 1)]0 (16)

as well as the initial quotient values

= (2] = 2652

o = Hg(%o)ﬂn"”’qg“” _ H%C—UH (18)

Step 2. Loop for stage =1:n —1 and LLR bit i =0: C — 1 within the stage. Note that each
i update is implemented by an individual circuit. Therefore, we have C circuits working in parallel, each
calculating the interleaver indexing pair for each of the C' LLRs needed by decoding of the inner code.
First, we expand

g(Ci+C) =2cl(i + C) + C(k + £C)

= g(C,i) +2C% (19)

We update the modulus by applying Eq. (13) as

18

J

T f(stage-C+i) = [f((stage —1)-C + i+

—~
C

).,
= [f((stage — 1) - C + i) + g((stage — 1) - C +1)] .
= Tf((stage—1)C+i) (20)

because for all stages and applying Eq. (19)

Tg(stage-C+i) = [g((stage -1)-C+ z) + 2028]0

-0 (21)
We express the functions
f((stage—1)~C+i) =qC +1y (22)
and
g((stage —1) - C +1i) = q,C + 1y (23)

We follow by updating the quotient for f as

g C+rp+q,CH+ry
qf(stage-C+i) = C

re+rT
= v 7],

= [Qf((stage—1)0+i) + qg((stage—l)C+i)]n (24)

because from Eq. (20) 7y < C' and from Eq. (21) 4 = 0. We can then update the quotient for g as

g ((stage — 1) - C +1) +20%¢
Qg(stage-C+i) = C

[l =

= [dg((stage—1)-c0i) T Aq),, (25)

The memory module for the interleaver position f (stage-C +) is then rf(sage.c4i), and the address
entry is qf(stage-C+i)-

19

C. Circuit Description for the Algorithmic Interleaver

The derivations of Egs. (20) and (21) indicate that the memory module index for each bit LLR and
each stage stays the same throughout the trellis. Plugging in parameters to the initial values of Eq. (15)
will show that the memory module index has a period C'. This observation is confirmed by Table 1. In
the table, the memory module indices take on the values [0,C' —1,C —2,---,2,1] for every stage, and
this pattern repeats for all stages. Consequently, we need to calculate only the address entry for each
bit LLR in each stage. A circuit that implements Eqgs. (24) and (25) to compute the address entry of
each LLR per trellis stage is given in Fig. 18. Note that there will be C' such circuits, one for each LLR,
working in parallel.

This algorithmic interleaver removes the need to store Table 1. Implementation requires only a small
number of gates. This memory-saving benefit is even more evident in multiple decoder instantiations on
one FPGA because many copies of the same table need not be stored. Some idea of the actual savings
provided by the algorithmic interleaver is found in Section VIII.

VII. A CRC Circuit for Window-Based Turbo Decoders

A straightforward hardware implementation of a cyclic redundancy check (CRC) is simply a linear
feedback shift register (LFSR). A block of information bits and the associated CRC check bits are shifted
into the LFSR circuit one bit at a time. After the entire block is input to the circuit, the state of the
registers indicates whether the CRC passed or not. A CRC can be used together with iterative turbo
decoding to flag codeword errors or to stop decoding iterations. To increase the throughput of turbo
decoding, the code trellis can be partitioned into distinct windows, and multiple decoders can be applied
to these windowed trellis segments in parallel. In windowed-based turbo decoding, the bits to be input to
the CRC will be generated in parallel, more than one at a time. Therefore, the serial input CRC circuit
needs to be modified to handle this parallelism.

Address
é > Index

Af(stage- C+ i) »

qg (stage-C+1i)

Fig. 18. A circuit that computes the address into the memory module for the ith LLR in
each stage, where i = [0, -, C — 1]. There will be C instances of this circuit, one for
each LLR.

20

A. Polynomial Description of CRCs

Let us write a length-k binary message block m = (my_1,mg_2,---,mg), which is to be protected by

a CRC, in polynomial form:
m(x) = my_13" "+ mp_s2" 2 4+ mg
Let the length-n CRC-protected codeword be ¢ = (¢p—1, ¢n—2, -+, Co) Or
c(x) = cp12™ P cp0r" T+ 4 g
and the CRC generator be

9(x) = gn_px"F + -+ go

(26)

(28)

The CRC polynomial r (z) is calculated by first shifting the message polynomial left by n — k positions

and then by taking the modulo g (x) operation
7(z) = Ry(z) [m(z) - x”_k}

where deg [r(x)] < n — k. The codeword block can also be written as

(@ is the binary XOR operations) or

c(x) =m(z) - 2" F +r(x)

(29)

(30)

(31)

To verify the CRC of a codeword block é(z) = c(z) + e(z) that may be corrupted by an error

polynomial e(x), we calculate

Ry [6(2)] = Ry [m(@) - 2" F 4 1(2) + e()]

= Ry(a) [Ry(a) [m(@) - 2" 7] + Ry(a) [r(2)] + Ry(a) [e(2)]]

=7(zx) +r(x) + Ry [e(x)]

= Ry() [e(2)]

(32)

Therefore, if the remainder is zero, the CRC passes and the error polynomial is zero. If the remainder
is nonzero, then the codeword is corrupted. Note that we won’t be able to construct the error polyno-

mial e(z) from the CRC remainder Ry, [e(z)].

21

B. Hardware Description of CRC Checks

A CRC is simply a modulo operation and can be implemented by an LFSR for dividing polynomials.
The circuit for multiplying by a polynomial h(z) and dividing by a polynomial g(z), each with degree
up to ¢, is given in Fig. 19. For division only, simply set h(z) =1 (hg = 1; every other coefficient to 0).
After the entire codeword is shifted into the circuit, the quotient of the division operation is given by the
bits that are shifted out, and the remainder is given by the register state. More information on LFSRs
can be found in [20, Linear Switching Circuits].

C. CRC Circuit for Windowed-Based Turbo Decoding

In windowed-based turbo decoding, the output bit streams to be fed into the CRC are generated in
parallel, as seen in Fig. 20. We describe how a CRC circuit can be modified to handle this parallelism.
Let the code trellis be partitioned into j distinct windows. The codeword polynomial can be written as

clx)=c(x)z® +ca(z) 2™ + - +¢j () (33)
We can then write the check polynomial as
Ry) [c(2)] = Ry [er(2)2™ + ea(@)2™ + -+ + ¢;(2)]

= Ry) Ryt [e1(2)77] + Ry(ay [e2(2)™] + -+ + Ry [e5(@)]|

= Ryto) R 1 @)1(2)] + Ry [ea(odia@)] + 4 Ry [es)] (30

where r; = Ry(,)[z®], i =1,2,---,j—1, and each k;(x) can be precalculated. The CRC LFSR circuit for
the window-based decoder will consist of both feedforward and feedback tap connections. The feedforward
taps are given by the XOR of x;(z)’s, and the feedback taps are given by the generator g(z).

D. A CRC Circuit for the Window-Based SCPPM Decoder

A practical realization of the SCPPM code scheme is to use PPM order 64. The SCPPM decoder
in our implementation is windowed by three, as detailed in Section V.F, to double the overall through-
put. With the outer code trellis having 7560 stages, each windowed-by-three segment has 2520 stages. We

Output g
Ll
©
f

' N
' N

O
i
OO

v
D
o
(2

f

4

Input

Fig. 19. A circuit for multiplying by h (x) and dividing by g (x).

22

Trellis

%
»;4
X
%

Window #1 Window #2 Window #3
To CRC @ To CRC@ To CRC@
Bit Stream 1 Bit Stream 2 Bit Stream 3

Fig. 20. A trellis windowed by three leads to three simultaneous decoded bit streams.

use a 22-bit CRC with generator g(x) = 222 + 2° + 2* + 2% + 1 to check the output of the windowed
SCPPM decoder. The CRC indicates whether a correct codeword decision is reached and can be used
to stop the iteration process. Using techniques presented in this section, we precompute the polynomials
k1(2) = Ry(y) [#°°°] and k2 () = Ry, [#?°%°] and generate three circuits (shown in Fig. 21) to check
the output bit stream of each window. We can optimize and consolidate the three circuits into one by
XORing the three output bit streams according to the feedforward taps before inputting to the CRC
circuit.

VIII. Results for Decoder Implementation and Performance

The SCPPM decoder for PPM order M = 64 is currently implemented on a Xilinx Virtex II-8000
FPGA part, speed grade 4 (XC2V8000-4), which sits on a Nallatech BenDATA-WS board. The memory
requirement is reduced by taking only the top 8 channel LLRs as decoder input. The channel LLRs input
to the decoder are quantized to 8 bits, 5 for dynamic range and 3 for precision.

We have implemented three versions of the decoder. The first is the log-MAP decoder with normaliza-
tion and clipping circuits for the state metrics. The backward recursion state metrics 3’s are clipped to
8 bits before being stored into RAMs. The forward recursion state metrics @’s are calculated as needed
and are not stored. The remaining variables in the data path are allowed to grow and are not stored.

The second is the max log-MAP decoder with modulo normalization. The 3’s are allowed to grow in
dynamic range up to 16 bits (plus a 3-bit precision for a total of 19 bits) before being stored into RAMs.
Again, the @’s are calculated as needed and are not stored. All other metrics are allowed to grow in width
and are not stored.

The third is the window-based max log-MAP decoder. The outer code trellis is partitioned into three.

We had the opportunity to complete only the place and route for a fourth variation of the decoder,
the “maxstar top 2” implementation, and did not get a chance to finish the wrapper around the decoder.
But we did produce a bit-exact software of the maxstar top 2 decoder and used it to generate accurate
simulation results.

A. Resource Utilization

The total FPGA resource utilization as well as a breakdown by modules for each of the decoders are
given in Tables 2 through 4. The percentage of resources used by the inner decoder, outer decoder, and
the remaining blocks equal the total utilization. Blocks other than the decoder modules that consume
resources are the circuitries and memories instantiated for the FPGA interface.

23

a
(@) 3 4 5 22

gx)=1+x+x"+x2+x
Y, A4 v
Output
Outer Decoder 1 k() =1 +x +x2+ x3+ x84 x10 4 x4 x12 4 x13 4 x14 4 15
(b)
A A v l v
Iy AD_D'A
Output
Outer Decoder 2 ko(X) =1+ x +x3 4+ x5+ x84 x104 124 x13 4 x14 4 x16 4 x21
(c)
Output
K3(X) =1

Quter Decoder 3

Fig. 21. CRC circuits for the polynomial g (x) = x22 + x5 + x* + x3 + 1 and the SCPPM windowed by three decoder:
(a) outer decoder 1, (b) outer decoder 2, and (c) outer decoder 3.

Table 2. The log-MAP SCPPM decoder on the Virtex-1l 8000 FPGA.

Utilization, Inner, Outer, Others,
Used/total
percent percent percent percent
BRAM 101/168 60 19 9 32
Slices 30174/46592 64 52 6 6

Table 3. The max log-MAP SCPPM decoder on the Virtex-11 8000 FPGA.

Utilization, Inner, Outer, Others,
Used/total
percent percent percent percent
BRAM 86/168 51 19 9 23
Slices 19927/46592 42 31 5 6

24

Table 4. The max log-MAP window-based SCPPM decoder
on the Virtex-ll 8000 FPGA.

Utilization, Inner, Outer, Others,
Used/total
percent percent percent percent
BRAM 134/168 80 19 30 31
Slices 24587/46592 53 32 15 6

The max lookup tables (LUTSs) for the log-MAP decoder are realized as read-only memories (ROMs).
The channel symbol memory and state metric storage memory are all implemented using Xilinx internal,
dual-ported block RAMs (BRAMs). In the log-MAP decoder, we store the interleaver mappings as LUTs
on BRAMs. This allows us to compare the memory savings in going to an algorithmic interleaver. For
the max log-MAP version, we avoid storing the interleaver mapping and use the algorithmic approach.
Comparing the two BRAM utilizations, we see that a 9 percent BRAM savings is achieved on the Virtex-II
FPGA using the algorithmic interleaver.

Table 5 directly compares the logic usage in the log-MAP, max log-MAP, and maxstar top 2 log-MAP
implementations. The log-MAP and max log-MAP decoders trade off logic and performance. If both
metrics are deemed to be important, we can compromise and use the hybrid maxstar top 2 log-MAP
decoder. The maximum clock rates and throughput based on 7 average iterations for three decoder
designs are given in Table 6.

B. Error-Rate Performance

The decoder performance is shown in Fig. 22. The frame-loss rate (FLR) is plotted versus ns, the
average signal photons per pulse slot in decibels. Each frame is a codeword of k = 7560 information
bits. A frame loss is declared when the decoder decision cannot converge to the correct codeword in
the maximum number of allowed iterations, which is set at 32. Out of the 7560 bits, 2 bits are used to
terminate the trellis and 22 bits are used for CRC. The CRC polynomial is 222 + 2% + z* + 23 + 1 and
has an undetected word-error probability of approximately 7 - 2722 = 1.67 x 1075, assuming 7 average
iterations. To reduce the undetected rate, the decoder runs a minimum number of iterations first before
validating the CRC. In doing so, the undetected probability is lowered to roughly the product of the
frame-loss rate and 1.67 x 107%, a very small value.

We make the following observations from the performance plot. Fixed-point implementation (circle
line) has a 0.1-dB loss compared to the floating-point decoder (dashed line). Clipping and normalization
of the state metrics leads to a floor at 1075. The max log-MAP decoder (square line) has a 0.6-dB loss
compared to log-MAP decoding (circle line). The max log-MAP decoder with a scaling of the extrinsic
information by 0.5 (diamond line) recovers 0.4 dB out of the 0.6 dB lost. Note that only the extrinsic
information at the output of the inner decoder is scaled by a factor between 0 and 1. The extrinsic
information at the output of the outer decoder is untouched. The clipping and normalization floor is
lowered by using modulo arithmetic.

Also notice that, using the maxstar top 2 (triangle line) circuit in the inner decoder, the log-MAP outer
decoder, and a scaling of inner decoder extrinsic information by 0.625, we are able to recover another
0.075 dB in signal energy. A 0.5 scale factor can be implemented in hardware by simply a right shift by 1.
A scaling of 0.625 is the sum of a right shift by 1 and right shift by 3.

25

FRAME-LOSS RATE

100

1071

1074

1075

1076

1077

Table 5. Resource utilization of the Xilinx Virtex-ll 8000
FPGA by the three decoding approaches.

maxstar
log-MAP, top 2 log-MAP, max log-MAP,
percent percent percent
Slice utilization 64 54 42

Table 6. Maximum clock rate and throughput for the two SCPPM decoder
designs on the Xilinx Virtex-11 8000 FGA.

Windowed
log-MAP max log-MAP max log-MAP
Maximum clock, MHz 23 63 63
Throughput, Mbps 1.23 3.36 6.72

T T 11T
/

Top 8 Statistics,
M=64, np=0.2

——— Capacity
. — . = log-MAP (Floating Point)

—o— log—MAP (Clip and Normalize)
—A— maxstar top 2 (FF = 0.625)
—6— max log-MAP (FF = 0.5)

—8— max log-MAP (FF =1)

1 1 1
25 3.0 3.5
ns (average photons per signal slot), dB

by
o

Fig. 22. SCPPM decoder performance on the Poisson channel under a
nominal deep-space mission scenario.

26

C. End-to-End Demonstration

We have demonstrated an end-to-end optical communications system in our laboratory using the
SCPPM scheme. The transmitter employs a 1064-nm-wavelength laser to modulate a stream of SCPPM-

encoded information into PPM pulses. The pulses are then delivered over a fiber-optic channel. At the
receiving end, a photon-counting detector is used, and the receiver assembly converts the photon counts
into LLRs for the SCPPM FPGA decoder described in this section. The results of the experimental runs
at various operating points are plotted in Fig. 23. There are two experimental runs, one at 4 Mbps and
the other at 6 Mbps. These two curves are compared to a curve generated by using a software-simulated
Poisson channel and the stand-alone FPGA decoder. We see that the experimental curves match very
closely to the stand-alone FPGA result. The system runs at an average of 7 iterations. The end-to-end
performance is within 1.4 dB of channel capacity.

D. Performance Comparison Versus Reed-Solomon—-PPM Scheme

A legacy ECC used in many previous and current NASA missions is the Reed—Solomon code. In Fig. 24
we compare the Reed-Solomon PPM (RS-PPM)-coded scheme versus the SCPPM-coded scheme and show
that, in a nominal mission scenario, SCPPM outperforms RS-PPM by 3 dB. The results are generated
using software simulation. To match the code rates, we use the SCPPM code parameters (N, K) =
(16398, 8199) and the RS-PPM code parameters (4085,2047). We choose 64 PPM as a reasonable order
and an average background count of 0.2 photons per slot.

E. Performance Comparison of Different Interleavers

The interleaver design affects the error-rate performance and error floor of SCPPM. Through simu-
lation, we show that the SCPPM permutation polynomial interleaver performs as well as a o-random
interleaver and has no observable error floor. The error-rate curves are plotted in Fig. 25. We see that for
both the word-error rate (WER) and bit-error rate (BER) the two interleavers produced almost identical
decoder performances. For deep-space missions, where minimum WER floor requirements are generally
that of 1074, the two interleavers meet the specifications.

F. Path to 50 Mbps and Beyond

We achieved a 6.72-Mbps decoder on a single Xilinx Virtex-II FPGA. Currently, Xilinx has available
the Virtex-II Pro FPGA part that is manufactured with a smaller micron process and features more
BRAMs. We have completed a place and route of our fastest design on the Virtex-II Pro. Results
indicate that the SCPPM decoder can deliver 8 Mbps at 7 average iterations. We can add another stage
of parallelism to our design so that the inner decoder and outer decoder can work on two codewords
simultaneously and are not idle at any time. Doing so doubles our throughput to 16 Mbps per FPGA.
Moreover, we can realize multiple instances of our decoder on the Nallatech BenNuey-4E PCI board that
has slots for three daughters, each capable of hosting two Virtex-II Pro FPGAs. This migration path
leads to a 96-Mbps SCPPM decoder that is fit for deep-space optical communications. We can further
increase the throughput to hundreds of megabits and beyond by implementing a lower-order SCPPM
decoder, such as 16-PPM, for terrestrial applications where a smaller PPM order actually achieves higher
capacity due to the shorter distance between the transmitter and receiver.

IX. Conclusion

The serially concatenated pulse-position modulation (SCPPM) capacity-approaching code was de-
signed by NASA to support deep-space optical communications at 50 Mbps and beyond. The structure of
the SCPPM trellis makes direct application of conventional turbo decoding very inefficient. We therefore
introduced the following new techniques that optimize the overall decoder throughput and performance:

27

FRAME-LOSS RATE

WORD-ERROR RATE

100

1071

1072

1073

1074

1075

1076

100

1071

1072

1073

1074

1075

1076

E T I I T T T T T T E
- Full Statistics 3
N Floating Point 64 PPM, ny=0.2]
/ 32 lterations
§ -+—— 4 Mbps End-to-End (7 lterations) §
B | o _
= Capacity =
C <—— 6 Mbps End-to-End (7 lterations) m
E 0.8dB 0.6 dB 3
<— FPGA Only E
r 7 lterations]
l l l l l l l | |
25 3.0 3.5 4.0 4.5 5.0 5.5 6.0 65 7.0
ng (average photons per signal slot), dB
Fig. 23. End-to-end system demonstration of the SCPPM scheme over
the optical channel.
E T T T T T T N 3
E \ 3
C 64 PPM, n,=0.2 \]
E | -
: o
C \ 7
i ——— (16398,8199) SCPPM | 7
3 — — — (4085,2047) RS-PPM T
C |]
L | i
3 I3
i (-
I 3dB b
E - > 3
c 13
i -
E I 4
E 13
| | | | ! | |
25 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

ng (average photons per signal slot), dB

Fig. 24. Comparison of SCPPM versus RS-PPM under nominal
deep-space mission scenario.

28

100 E I I I E
i M=64,n,=0.2 _
10_1 E_ _E
1072 =
w E E
- L -
< | .
o
r 103 L _
S 107 E :
o - =
T F 3
w : N
—4
107" & —+—BER, c-random E
E —x— WER, c-random E
3 —©— BER, 11x+210x2 —
10° F —8— WER, 11x+210x2 E
B O]
1076 | | | | | |
2.7 238 2.9 3.0 3.1 3.2 33 3.4

ng (average photons per signal slot), dB

Fig. 25. Comparison of the SCPPM polynomial interleaver
versus the s-random interleaver.

a simplified Super Gamma computation to handle parallel trellis edges, a hybrid “maxstar top 2” circuit
to manage memory and error-rate performance, and a modulo arithmetic circuit with a short path delay
to avoid clipping and normalization.

The SCPPM trellis is also windowed to further increase data rate. We designed a compact CRC
circuit that works with window-based decoders and incorporated a CRC to stop the decoding iterations.
Moreover, we presented a fast and memory-free algorithmic interleaver implementation. Our algorithmic
interleaver performs as well as any carefully designed random interleaver and exhibits a very low error
floor.

To compare these techniques, we implemented three variations of the SCPPM decoder on a Xilinx
Virtex-1T 8000 FPGA and summarized their trade-offs. Through hardware simulation, we demonstrated
that the SCPPM-coded scheme can perform within 1 dB of capacity in a nominal mission condition. Our
techniques are applicable to any modulation and code scheme that has a high peak-to-average-power ratio
designed to fit the requirements of optical communications.

We summarize the hardware implementation trade space in Table 7. For free-space optical commu-
nications, this chart allows a potential designer to select the best modulation and coding features that
would meet a desirable performance requirement and fit onto an affordable FPGA real estate.

29

Table 7. Decoder implementation trade space.

Description Options Data rate Pef(fs;nzglce Complexity
Slot statistics from receiver Top 8 — 0.2 —
Full M — 0 —
Algorithm max log-MAP 1.7x 0.2 0.74x
log-MAP 1x 0 1x
Arithmetic Modulo 1.7x — 0.9x
Clip and normalize 1x — 1x
Windowing Outer trellis 2x — 1.1x
None 1x — 1x
Iterations Variable/CRC stopping rule >1x 0 —
Fixed 1x >0 —
References
[1] J. R. Pierce, “Optical Channels: Practical Limits with Photon Counting,” IEEE
Transactions on Communications, vol. 26, pp. 1819-1821, December 1978.
[2] B. Moision and J. Hamkins, “Coded Modulation for the Deep-Space Optical
Channel: Serially Concatenated Pulse-Position Modulation,” The Interplanetary
Network Progress Report, vol. 42-161, Jet Propulsion Laboratory, Pasadena, Cal-
ifornia, pp. 1-25, May 15, 2005.
http://ipnpr/progress_report/42-161/161T.pdf
[3] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A Soft-Input Soft-
Output Maximum A Posteriori (MAP) Module to Decode Parallel and Serial
Concatenated Codes,” The Telecommunications and Data Acquisition Progress
Report 42-127, July—September 1996, Jet Propulsion Laboratory, Pasadena, Cal-
ifornia, pp. 1-20, November 15, 1996.
http://ipnpr/progress_report/42-127/127H.pdf
[4] H. Hemmati, ed., Deep Space Optical Communications, Hoboken, New Jersey:
John Wiley & Sons Inc., 2006.
[5] K. J. Quirk and L. B. Milstein, “Optical PPM with Sample Decision Pho-
ton Counting,” Proceedings of the IEEFE Global Telecommunications Conference,
St. Louis, Missouri, pp. 148-151, December 2005.
[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Transactions on Information
Theory, vol. 20, pp. 284-287, March 1974.
[7] W. E. Ryan, A Turbo Code Tutorial, 1997.
http://www.ece.arizona.edu/ ryan/publications/turbo2c.pdf
[8] T. V. Souvignier, Turbo Decoding for Partial Response Channels, Ph.D. thesis,

University of California, San Diego, 1999.

30

Memory
use

1x
4x

[9]

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]

A. J. Viterbi, “An Intuitive Justification and a Simplified Implementation of
the MAP Decoder for Convolutional Codes,” IEEE Journal on Selected Areas in
Communications, vol. 16, pp. 260-264, February 1998.

G. Montorsi and S. Benedetto, “Design of Fixed Point Iterative Decoders for
Concatenated Codes with Interleavers,” IEEE Journal on Selected Areas in Com-
munications, vol. 19, pp. 871-882, May 2001.

P. H. Wu and S. M. Pisuk, “Implementation of a Low Complexity, Low Power,
Integer-Based Turbo Decoder,” Proceedings of the IEEE Global Telecommunica-
tions Conference, vol. 2, San Antonio, Texas, pp. 946-951, 2001.

J. Vogt and A. Finger, “Improving the max-log-MAP Turbo Decoder,” Electronic
Letters, vol. 36, pp. 1937-1939, November 2000.

M. Barsoum and B. Moision, Method and Apparatus for Fast Digital Turbo De-
coding for Trellises with Parallel Edges, JPL Novel Technical Report no. 4123,
Jet Propulsion Laboratory, Pasadena, California, July 2004.

A. P. Hekstra, “An Alternative to Metric Rescaling in Viterbi-Decoders,” IEFEE
Transactions on Communications, vol. 37, pp. 1220-1222, November 1989.

C. Shung, P. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI Architectures
for Metric Normalization in the Viterbi Algorithm,” Proceedings of the IEEE
International Conference on Communications, vol. 4, Atlanta, Georgia, pp. 1723—
1728, April 1990.

B. Moision and J. Hamkins, “Reduced Complexity Decoding of Coded Pulse-
Position Modulation Using Partial Statistics,” The Interplanetary Network
Progress Report, vol. 42-161, Jet Propulsion Laboratory, Pasadena, California,
pp. 1-20, May 15, 2005.

http://ipnpr/progress_report/42-161/1610.pdf

J. Sun and O. Y. Takeshita, “Interleavers for Turbo Codes Using Permutation
Polynomials over Integer Rings,” IEEE Transactions on Information Theory,
vol. 51, pp. 101-119, January 2005.

0. Y. Takeshita, “On Maximum Contention-Free Interleavers and Permutation
Polynomials over Integer Rings,” IEEE Transactions on Information Theory,
vol. 52, pp. 1249-1253, March 2006.

S. Dolinar and D. Divsalar, “Weight Distributions for Turbo Codes Using Ran-
dom and Nonrandom Permutations,” The Telecommunications and Data Ac-
quisition Progress Report 42-122, April-June 1995, Jet Propulsion Laboratory,
Pasadena, California, pp. 56-65, August 15, 1995.
http://ipnpr/progress_report/42-122/122B.pdf

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, Cambridge,
Massachusetts: The M.I.T. Press, 1961.

31

